Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Reactor pressure vessel design of the high temperature engineering test reactor

Tachibana, Yukio; Nakagawa, Shigeaki; Iyoku, Tatsuo

Nuclear Engineering and Design, 233(1-3), p.103 - 112, 2004/10

 Times Cited Count:1 Percentile:10.03(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Structural design of high temperature metallic components

Tachibana, Yukio; Iyoku, Tatsuo

Nuclear Engineering and Design, 233(1-3), p.261 - 272, 2004/10

 Times Cited Count:23 Percentile:80.21(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design and fabrication of reactor pressure vessel for High Temperature Engineering Test Reactor (HTTR)

Tachibana, Yukio; Nakagawa, Shigeaki; Iyoku, Tatsuo

Elevated Temperature Design and Analysis, Nonlinear Analysis, and Plastic Components, 2004 (PVP-Vol.472), p.39 - 44, 2004/07

The reactor pressure vessel (RPV) of the HTTR is 5.5m in inside diameter, 13.2m in inside height, and 122mm and 160mm in wall thickness of the body and the top head dome, respectively. Because the reactor inlet temperature of the HTTR is higher than that of LWRs, 2 1/4Cr-1Mo steel is chosen for the RPV material. Fluence of the RPV is estimated to be less than 1$$times$$10$$^{17}$$n/cm$$^{2}$$(E$$>$$1 MeV), and so irradiation embrittlement is presumed to be negligible, but temper embrittlement is not. For the purpose of reducing embrittlement, content of some elements is limited on 2 1/4 Cr-1 Mo steel for the RPV using embrittlement parameters, J-factor and X-bar. In this paper design, fabrication procedure, and in-service inspection technique of the RPV for the HTTR are described.

Journal Articles

Effect of applied stress on temper embrittlement of 2 1/4 Cr-1Mo steel

; ;

Trans.Iron Steel Inst.Jpn., 22, p.863 - 868, 1982/00

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1